ProCAMD: Illustration with sovent selection or removal of phenol from water

Step1: Problem definition

We start by entering ProCamd from ICAS and then we need to fill-out the pages according to the instruction manual from section 1. The screens corresponding to the different pages of ProCamd are shown below.

General Problem Control New Jacobson dated areas	Connect Backley, Control	Non temperature dend, propa		
Non temperature deput, props.	General Froblem Control			
Problem Title: Title solvent substitution (solvents for phenol) -SLE	Normal Boiling Point (K): Normal Melting Point (K):	Min: Max: Goal: 322 373 353.2 0 314 0		
Acurclic Compounds	Total Solubility, Param. (MPa ¹ ^e):	22 26 24.6		
Autoslack in initial generation:	LogP (Octanol/Water):	1.5 2 2.13		
C Cyclic Compounds				
Preselection ✓ Generate Alcohols				
Generate Ketones Generate Ethers	Temperature depd. props.	Mixture Properties		
🔽 Generate Aldehydes 📃 Generate Amines	– General			
Generate Acids Generate Amides	Perform Mixture Calculation	15		
Generate Compounds containing silicon	r Model:			
Generate Compounds containing double bonds	O UNIPAR - Original UNIFAC	(VLE)		
Lienerate Compounds containing triple bonds	O UNIPARL - Original UNIFA	C (LLE)		
Generate Compounds containing rotaining	C. UNIUN - Original UNIEAC I	O LINUIN - Original UNIEAC (2 parameter linear V/ 5)		
Generate Compounds containing trionine		C UNILIN - Original UNIPAC (2 parameter, linear, VLE)		
Generate Compounds containing iodine	UNIMUD - Modified UNIFA	AC (3 parameter, MHV2, VLE)		
Generate Compounds containing sulphur	Calculation Type:	Conditions:		
Selected Groups:	C VLE - Calculations	Temperature (K): 298		
СНЗ СН2 СН С ОН СНЗСО	LLE - Calculations	Pressure (bar): 1		
CH2C0 CH0 CH30 CH20 CH-0	Selected Key Components:			
	Phenol			
Edit Groups		E dit		
User specified compounds:	- Molefractions of Key Compone	nts:		
CH31CH230H1 CH32CH21CH10H1 CH32CH10H1 Define Define	Phenol 1.0000			
		1		
	Select Solute:			
Define as user-specified compounds, some of	Phenol	•		
the solvents that annear in "common solv"	Constraints:	Min: Max: Goal:		
	Solvent Power:	0.1 0 0		

Problem specification pages from ProCamd for the solvent substitution exercise

Step 2: Run ProCAMD by clicking on the "run" button

Azeotrope/Miscibility Calculations	Biodegradation Calculations
General:	
Perform Miscibility calculations	
Perform SLE calculations	
Azeotrope Specifications:	
Phenol	C Don't calculate
<u> </u>	
SLE Specifications	
Temperature 298 K	
Solid Phase must exist	
C Solid Phase must not exist	

Compound 1 :

Description :			
No	Groupname		
1	CH3		
1	CH2		
1	OH		

Properties :				
Property	Value	2. Value	Unit	
Octanol/Water partition coef.	0.156	0.156		
Solubility parameter at 298 K	25.01	25.01	MPa ¹¹²	
Normal Melting point	164.57	164.57	К	
Normal Boiling point	330.01	330.01	К	
Solvent power	0.151	0.151		
NO AZEOTROP w. keycomp. no 1				
Solid phase of keycomp. 1 at X1	-	0.736		

€< << >> >€ Sort Info ProPred Databank

Problem specification page from ProCamd.

Results section from ProCamd. Note that "ProPred" and "Databank" are highlighted. This means that we can use these tools for this compound.

The solution statistics are shown in the figure below. This screen can also be obtained by clicking on "Info".

From the figures above, it can be noted that ethanol is also a feasible candidate as a solvent. We will verify the feasibility of ethanol in the next step.

Step 3: Verification of solvent through a solid-liquid equilibrium phase diagram

In order to obtain a solid-liquid equilibrium phase diagram, follow the steps given in appendix A3. The following steps are necessary:

- 1. Draw a stream in the ICAS-main window
- 2. Select 🚇 the compounds phenol and ethanol
- 3. Select 🀸 the property models (select UNIFAC-VLE model for liquid phase activity coefficients
- 4. Double click on the stream, specify the pressure (1 atm) and any values for temperature (for example, 300 K) and composition (for example, 1 and 1). Click on ⁴ located on the top left hand corner.
- Click on "Organic SLE" and then specify the data as shown below.

The specifications to generate the "entire T-X" diagram with the organic SLE toolbox of ICAS. Figure f shows the generated diagram. Clearly, at 300 K, a large amount of phenol can be dissolved.